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Abstract. Using the fixed point method, we prove some results concerning the stability of the functional
equation
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where f is defined on a vector space and taking values in a fuzzy Banach space, which is said to be a
functional equation related to a characterization of inner product spaces.

1. Introduction

Stability problem of functional equations was first posed by Ulam in [35] which was answered by
Hyers in [14] for additive mappings. Hyers’ result, using unbounded Cauchy different, was generalized
for additive mappings in [1] and for linear mappings in [31]. Since then there have been several new results
on stability of various classes of functional equations in the Hyers-Ulam sense or Hyers-Ulam-Rassias
sense in normed spaces (see [10, 15, 16, 34] and references cited therein). Stability problems of functional
equations on arbitrary groups and on non-abelian groups were treated in [6–9]. In [20–23], various stability
results concerning Cauchy, Jensen, quadratic and cubic functional equations were investigated in fuzzy
normed spaces. Furthermore some stability results concerning additive, quadratic, Cauchy-Jensen, mixed
type cubic and quartic functional equations were investigated (cf. [5, 12, 19, 24, 33]) in the setting of
non-Archimedean fuzzy normed spaces, non-ArchimedeanL-fuzzy normed spaces and generalized fuzzy
normed spaces, respectively.

It was shown by Rassias [32] that a normed space (X, ‖ · ‖) is an inner product space if and only if for any
finite set of vectors x1, . . . , xn ∈ X, and a fixed integer n ≥ 2
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Employing the above identity, Najati and Rassias [26] obtained the functional equation

n∑
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f (xi −
1
n

n∑
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x j) =

n∑
i=1

f (xi) − n f (
1
n

n∑
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xi). (2)

It is easy to see that the function f (x) = ax2 + bx is a solution of the functional equation (2). In [17, 28], the
authors introduced the following functional equation

2n∑
i=1

f (xi −
1
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2n∑
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x j) =

2n∑
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f (xi) − 2n f (
1

2n

2n∑
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xi), (3)

which is said to be a functional equation related to a characterization of inner product spaces. They
obtained the general solution of equation (3) and proved the Hyers-Ulam-Rassias stability of this equation.
For notational simplicity, we will denote the functional equation (3) as

D f (x1, . . . , x2n) = 0,

where D f is given by

D f (x1, . . . , x2n) :=
2n∑
i=1

f (xi −
1

2n

2n∑
j=1

x j) −
2n∑
i=1

f (xi) + 2n f (
1

2n

2n∑
i=1

xi). (4)

There are many interesting new results concerning functional equations related to inner product spaces
have been obtained by Park et al. [27] as well as for fuzzy stability of functional equations related to inner
product spaces [11, 29].

The main purpose of this paper is to establish a fuzzy version of the Hyers-Ulam-Rassias stability for
the functional equation (3) in fuzzy Banach spaces by using the fixed point method. This paper is different
from the earlier papers [11, 29] in the sense that the bound used in this paper for D f (x1, . . . , x2n) is quite
different from the bound used in [11] (or see [29]). Specializing the function ϕ(x1, . . . , x2n) which is as a part
of the bound, we obtain several results similar to results known for stability of the equation (3) in Banach
spaces.

2. Preliminaries

In this section, some definition and preliminary results are given which will be used in this paper.
Following [2, 20, 21], we give the following notion of a fuzzy norm.

Definition 2.1. Let X be a real vector space. A function N : X ×R→ [0, 1] (the so-called fuzzy subset) is said to be
a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R:
(N1) N(x, c) = 0 for c ≤ 0;
(N2) x = 0 if and only if N(x, c) = 1 for all c > 0;
(N3) N(cx, t) = N(x, t

|c| ) if c , 0;
(N4) N(x + y, s + t) ≥ min{N(x, s),N(y, t)};
(N5) N(x, ·) is a non-decreasing function on R and lim

t→∞
N(x, t) = 1;

(N6) for x , 0, N(x, ·) is continuous on R.
In this case (X,N) is called a fuzzy normed vector space.

Example 2.2. (cf. [25]). Let (X, ‖ · ‖) be a normed vector space and α, β > 0. Then

N(x, t) =

{ αt
αt+β‖x‖ , t > 0, x ∈ X,
0, t ≤ 0, x ∈ X

is a fuzzy norm on X.
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Example 2.3. (cf. [25]). Let (X, ‖ · ‖) be a normed vector space and β > α > 0. Then

N(x, t) =


0, t ≤ α‖x‖,

t
t+(β−α)‖x‖ , α‖x‖ < t ≤ β‖x‖,
1, t > β‖x‖

is a fuzzy norm on X.

Definition 2.4. (cf. [2, 20, 21]). Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is said to be
convergent if there exists x ∈ X such that lim

n→∞
N(xn−x, t) = 1(t > 0). In that case, x is called the limit of the sequence

{xn} and we denote by N − lim
n→∞

xn = x.

Definition 2.5. (cf. [2, 20, 21]). Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is called Cauchy
if for each ε > 0 and δ > 0, there exists n0 ∈ N such that N(xm − xn, δ) > 1 − ε (m,n ≥ n0). If each Cauchy sequence
is convergent, then the fuzzy norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

Definition 2.6. Let E be a set. A function d : E × E→ [0,∞] is called a generalized metric on E if d satisfies
(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x), ∀x, y ∈ E;
(3) d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ E.

The next result is due to Diaz and Margolis [4].

Lemma 2.7. (cf. [4] or [30]). Let (E, d) be a complete generalized metric space and J : E→ E be a strictly contractive
mapping with Lipschitz constant L < 1. Then for each fixed element x ∈ E, either

d(Jnx, Jn+1x) = ∞ ∀n ≥ 0,
or
d(Jnx, Jn+1x) < ∞ ∀n ≥ n0,

for some natural number n0. Moreover, if the second alternative holds then:
(i) The sequence {Jnx} is convergent to a fixed point y∗ of J;
(ii) y∗ is the unique fixed point of J in the set E′ := {y ∈ E | d(Jn0 x, y) < +∞} and d(y, y∗) ≤ 1

1−L d(y, Jy), ∀x, y ∈ E′.

3. Fuzzy Stability of Functional Equations

Before proceeding to the proof of the main results in this section, we shall need the following two
lemmas.

Lemma 3.1. (cf. [28]). Let V and W be real vector spaces. If an odd mapping f : V → W satisfies (3), then the
mapping f : V →W is additive, that is, f is a solution of f (x + y) = f (x) + f (y) for all x, y ∈ V.

Lemma 3.2. (cf. [17]). Let V and W be real vector spaces. If an even mapping f : V → W satisfies (3), then the
mapping f : V →W is quadratic, that is, f is a solution of f (x + y) + f (x − y) = 2 f (x) + 2 f (y) for all x, y ∈ V.

In this section, we assume that X is a vector space and (Υ,N) is a fuzzy Banach space. We will establish
the following stability results for functional equations (3) in fuzzy Banach spaces by using the fixed point
method, which is said to be a functional equation related to inner products space. For given mapping
f : X→ Υ, let D f : X2n

→ Υ be a mapping as defined in (4) for all x1, . . . , x2n ∈ X.
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Theorem 3.3. Let f : X → Υ be a mapping satisfying f (0) = 0 for which there exists a function ϕ : X2n
→ [0,∞)

such that

N(D f (x1, . . . , x2n), t) ≥
t

t + ϕ(x1, . . . , x2n)
(5)

for all x1, . . . , x2n ∈ X. If there exits a constant 0 < L < 1 such that

ϕ(x1, . . . , x2n) ≤
L
2
ϕ(2x1, . . . , 2x2n) (6)

for all x1, . . . , x2n ∈ X, then there exists a unique additive mapping A : X→ Υ satisfying (3) such that

N( f (x) − f (−x) − A(x), t) ≥
n(1 − L)t

n(1 − L)t + LΦ(x)
(7)

for all x ∈ X and t > 0, where

Φ(x) = ϕ(2x, . . . , 2x︸     ︷︷     ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

) + ϕ(−2x, . . . ,−2x︸         ︷︷         ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

). (8)

Proof. Setting x1 = · · · = xn = x and xn+1 = · · · = x2n = 0 in (5), we obtain

N(3n f (
x
2

) + n f (
−x
2

) − n f (x), t) ≥
t

t + ϕ(x, . . . , x︸  ︷︷  ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

)
(9)

for all x ∈ X and all t > 0. Replacing x by −x in (9), we get

N(3n f (
−x
2

) + n f (
x
2

) − n f (−x), t) ≥
t

t + ϕ(−x, . . . ,−x︸      ︷︷      ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

)
(10)

for all x ∈ X and all t > 0. Thus

N(2n( f (
x
2

) − f (
−x
2

)) − n( f (x) − f (−x)), 2t)

≥ min{N(3n f (
x
2

) + n f (
−x
2

) − n f (x), t),N(3n f (
−x
2

) + n f (
x
2

) − n f (−x), t)}

≥
t

t + ϕ(x, . . . , x︸  ︷︷  ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

) + ϕ(−x, . . . ,−x︸      ︷︷      ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

)
(11)

for all x ∈ X and all t > 0. Letting 1(x) = f (x) − f (−x) and

Φ(x) = ϕ(2x, . . . , 2x︸     ︷︷     ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

) + ϕ(−2x, . . . ,−2x︸         ︷︷         ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

)

for all x ∈ X, we get

N(2n1(
x
2

) − n1(x), 2t) ≥
t

t + Φ( x
2 )

(12)

for all x ∈ X and all t > 0. Therefore

N(1(2x) − 21(x),
2
n

t) ≥
t

t + Φ(x)
(13)
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for all x ∈ X and all t > 0.
Let E1 be the set of all functions q1 : X→ Υ. Let us introduce a generalized metric on E1 as follows:

d1(q1, h1) := inf
{
λ ∈ [0,∞]

∣∣∣∣∣N(q1(x) − h1(x), λt) ≥
t

t + Φ(x)
,∀x ∈ X,∀t > 0

}
.

It is easy to prove that (E1, d1) is a complete generalized metric space [3, 13, 18].
Now we consider the function J1 : E1 → E1 defined by

J1q1(x) := 2q1(
x
2

), for all q1 ∈ E1 and x ∈ X. (14)

Let q1, h1 ∈ E1 and let λ ∈ [0,∞] be an arbitrary constant with d1(q1, h1) ≤ λ. From the definition of d1,
we have

N(q1(x) − h1(x), λt) ≥
t

t + Φ(x)

for all x ∈ X and all t > 0. Hence

N(J1q1(x) −J1h1(x),Lλt) = N(2q1(
x
2

) − 2h1(
x
2

),Lλt)

= N(q1(
x
2

) − h1(
x
2

),
L
2
λt)

≥

L
2 t

L
2 t + Φ( x

2 )
≥

L
2 t

L
2 t + L

2 Φ(x)

=
t

t + Φ(x)
(15)

for all x ∈ X and all t > 0. Thus

d1(J1q1,J1h1) ≤ Ld1(q1, h1) (16)

for all q1, h1 ∈ E1.
It follows from (13) that

N(1(x) − 21(
x
2

),
2
n

L
2

t) ≥

L
2 t

L
2 t + Φ( x

2 )
≥

L
2 t

L
2 t + L

2 Φ(x)

=
t

t + Φ(x)

for all x ∈ X and all t > 0. So, we have d1(1,J11) ≤ L
n . Therefore according to Lemma 2.7, the sequenceJk

11

converges to a fixed point A of J1, that is,

A : X→ Υ, N − lim
n→∞

2k1(
x
2k

) = A(x)

and A(2x) = 2A(x) for all x ∈ X. Also A is the unique fixed point J1 in the set E∗1 = {q1 ∈ E1 : d1(1, q1) < ∞}
and

d1(1,A) ≤
1

1 − L
d1(1,J11) ≤

L
n(1 − L)

,

that is, inequality (7) holds true for all x ∈ X and all t > 0. It follows from (5) that

N(2kD1(
x1

2k
, . . . ,

x2n

2k
), 2kt) ≥

t
t + ϕ( x1

2k , . . . ,
x2n
2k ) + ϕ(− x1

2k , . . . ,−
x2n
2k )
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for all x1, . . . , x2n ∈ X, all t > 0 and all k ∈N. By (5), we get

N(2kD1(
x1

2k
, . . . ,

x2n

2k
), t) ≥

t
2k

t
2k + Lk

2k (ϕ( x1
2k , . . . ,

x2n
2k ) + ϕ(− x1

2k , . . . ,−
x2n
2k ))

for all x1, . . . , x2n ∈ X, all t > 0 and all k ∈N.

Since lim
k→∞

t
2k

t
2k + Lk

2k (ϕ(
x1
2k ,...,

x2n
2k )+ϕ(−

x1
2k ,...,−

x2n
2k ))

= 1 for all x1, . . . , x2n ∈ X and all t > 0, we have

N(DA(x1, . . . , x2n), t) = 1

for all x1, . . . , x2n ∈ X and all t > 0. Since every fuzzy Banach space Υ is a real vector space, by Lemma 3.1,
the mapping A : X → Υ is additive. Finally it remains to prove the uniqueness of A. Let T : X → Υ is
another additive mapping satisfying (3) and (7). Since d1(1,T) ≤ L

n(1−L) and T is additive, we get T ∈ E∗1 and
J1T(x) = 2T( x

2 ) = T(x) for all x ∈ X, i.e., T is a fixed point of J1. Since A is the unique fixed point of J1 in
E∗1, then T = A. This completes the proof of the theorem. �

Corollary 3.4. Let p > 1 and θ be non-negative real numbers. Let X be a normed vector space with norm ‖ · ‖. Let
f : X→ Υ be a mapping satisfying f (0) = 0 and

N(D f (x1, . . . , x2n), t) ≥
t

t + θ(‖x1‖
p + · · · + ‖x2n‖

p)
(17)

for all x1, . . . , x2n ∈ X and all t > 0. Then there exists a unique additive mapping A : X→ Υ satisfying (3) such that

N( f (x) − f (−x) − A(x), t) ≥
(2p
− 2)t

(2p − 2)t + 2p+2 · θ‖x‖p
(18)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.3 by taking

ϕ(x1, . . . , x2n) = θ(‖x1‖
p + · · · + ‖x2n‖

p)

for all x1, . . . , x2n ∈ X. Then we can choose L = 21−p and we get the desired result.

Corollary 3.5. Let f : X → Υ be an odd mapping for which there exists a function ϕ : X2n
→ [0,∞) satisfying (5)

and (6). Then there exists a unique additive mapping A : X→ Υ satisfying (3) such that

N(2 f (x) − A(x), t) ≥
n(1 − L)t

n(1 − L)t + LΦ(x)
(19)

for all x ∈ X and t > 0, where Φ(x) is defined in (8).

Theorem 3.6. Let f : X → Υ be a mapping satisfying f (0) = 0 for which there exists a function φ : X2n
→ [0,∞)

such that

N(D f (x1, . . . , x2n), t) ≥
t

t + φ(x1, . . . , x2n)
(20)

for all x1, . . . , x2n ∈ X. If there exits a constant 0 < L < 1 such that

φ(2x1, . . . , 2x2n) ≤ 2Lφ(x1, . . . , x2n) (21)

for all x1, . . . , x2n ∈ X, then there exists a unique additive mapping A : X→ Υ satisfying (3) such that

N( f (x) − f (−x) − A(x), t) ≥
n(1 − L)t

n(1 − L)t + Ψ(x)
(22)

for all x ∈ X and t > 0, where

Ψ(x) = φ(2x, . . . , 2x︸     ︷︷     ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

) + φ(−2x, . . . ,−2x︸         ︷︷         ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

). (23)
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Proof. Using the same method as in the proof of Theorem 3.3, we have

N(1(2x) − 21(x),
2
n

t) ≥
t

t + Ψ(x)
(24)

for all x ∈ X and all t > 0, where

Ψ(x) = φ(2x, . . . , 2x︸     ︷︷     ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

) + φ(−2x, . . . ,−2x︸         ︷︷         ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

).

We introduce the definitions for E1 and d1 as in the proof of Theorem 3.3 (by replacing Φ by Ψ) such that
(E1, d1) becomes a complete generalized metric space. Now we consider the function J1 : E1 → E1 defined
by

J1q1(x) :=
1
2

q1(2x), for all q1 ∈ E1 and x ∈ X. (25)

Let q1, h1 ∈ E1 and let λ ∈ [0,∞] be an arbitrary constant with d1(q1, h1) ≤ λ. From the definition of d1,
we have

N(q1(x) − h1(x), λt) ≥
t

t + Ψ(x)

for all x ∈ X and all t > 0. Hence

N(J1q1(x) −J1h1(x),Lλt) = N(
1
2

q1(2x) −
1
2

h1(2x),Lλt)

= N(q1(2x) − h1(2x), 2Lλt)

≥
2Lt

2Lt + Ψ(2x)
≥

2Lt
2Lt + 2LΨ(x)

=
t

t + Ψ(x)
(26)

for all x ∈ X and all t > 0. So

d1(J1q1,J1h1) ≤ Ld1(q1, h1) (27)

for all q1, h1 ∈ E1.
It follows from (24) that

N(1(x) −
1
2
1(2x),

1
n

t) ≥
t

t + Ψ(x)

for all x ∈ X and all t > 0. So, we have d1(1,J11) ≤ 1
n . Therefore according to Lemma 2.7, the sequenceJk

11

converges to a fixed point A of J1, that is,

A : X→ Υ, N − lim
n→∞

1
2k
1(2kx) = A(x)

and A(2x) = 2A(x) for all x ∈ X. Also A is the unique fixed point J1 in the set E∗1 = {q1 ∈ E1 : d1(1, q1) < ∞}
and

d1(1,A) ≤
1

1 − L
d1(1,J11) ≤

1
n(1 − L)

,

that is, inequality (22) holds true for all x ∈ X and all t > 0. The rest of the proof is similar to the proof of
Theorem 3.3 and we omit the details. This completes the proof of the theorem. �
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Corollary 3.7. Let 0 < p < 1 and θ be non-negative real numbers. Let X be a normed vector space with norm ‖ · ‖.
Let f : X → Υ be a mapping satisfying f (0) = 0 and (17). Then there exists a unique additive mapping A : X → Υ
satisfying (3) such that

N( f (x) − f (−x) − A(x), t) ≥
(2 − 2p)t

(2 − 2p)t + 2p+2 · θ‖x‖p
(28)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.6 by taking

φ(x1, . . . , x2n) = θ(‖x1‖
p + · · · + ‖x2n‖

p)

for all x1, . . . , x2n ∈ X. Then we can choose L = 2p−1 and we get the desired result.

Corollary 3.8. Let f : X→ Υ be an odd mapping for which there exists a function ϕ : X2n
→ [0,∞) satisfying (20)

and (21). Then there exists a unique additive mapping A : X→ Υ satisfying (3) such that

N(2 f (x) − A(x), t) ≥
n(1 − L)t

n(1 − L)t + Ψ(x)
(29)

for all x ∈ X and t > 0, where Ψ(x) is defined in (23).

Theorem 3.9. Let f : X → Υ be a mapping satisfying f (0) = 0 for which there exists a function ϕ : X2n
→ [0,∞)

such that

N(D f (x1, . . . , x2n), t) ≥
t

t + ϕ(x1, . . . , x2n)
(30)

for all x1, . . . , x2n ∈ X. If there exits a constant 0 < L < 1 such that

ϕ(x1, . . . , x2n) ≤
L
4
ϕ(2x1, . . . , 2x2n) (31)

for all x1, . . . , x2n ∈ X, then there exists a unique quadratic mapping Q : X→ Υ satisfying (3) such that

N( f (x) + f (−x) −Q(x), t) ≥
n(2 − 2L)t

n(2 − 2L)t + LΦ(x)
(32)

for all x ∈ X and t > 0, where Φ(x) is defined in (8).

Proof. Setting x1 = · · · = xn = x and xn+1 = · · · = x2n = 0 in (30), we obtain

N(3n f (
x
2

) + n f (
−x
2

) − n f (x), t) ≥
t

t + ϕ(x, . . . , x︸  ︷︷  ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

)
(33)

for all x ∈ X and all t > 0. Replacing x by −x in (33), we get

N(3n f (
−x
2

) + n f (
x
2

) − n f (−x), t) ≥
t

t + ϕ(−x, . . . ,−x︸      ︷︷      ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

)
(34)

for all x ∈ X and all t > 0. Thus

N(4n( f (
x
2

) + f (
−x
2

)) − n( f (x) + f (−x)), 2t)

≥ min{N(3n f (
x
2

) + n f (
−x
2

) − n f (x), t),N(3n f (
−x
2

) + n f (
x
2

) − n f (−x), t)}

≥
t

t + ϕ(x, . . . , x︸  ︷︷  ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

) + ϕ(−x, . . . ,−x︸      ︷︷      ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

)
(35)
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for all x ∈ X and all t > 0. Letting 1(x) = f (x) + f (−x) and

Φ(x) = ϕ(2x, . . . , 2x︸     ︷︷     ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

) + ϕ(−2x, . . . ,−2x︸         ︷︷         ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

)

for all x ∈ X, we get

N(4n1(
x
2

) − n1(x), 2t) ≥
t

t + Φ( x
2 )

(36)

for all x ∈ X and all t > 0. So

N(1(2x) − 41(x),
2
n

t) ≥
t

t + Φ(x)
(37)

for all x ∈ X and all t > 0.
Let E2 be the set of all functions q2 : X→ Υ and introduce a generalized metric on E2 as follows:

d2(q2, h2) := inf
{
µ ∈ [0,∞]

∣∣∣∣∣N(q2(x) − h2(x), µt) ≥
t

t + Φ(x)
,∀x ∈ X,∀t > 0

}
.

So (E2, d2) is a complete generalized metric space. Let J2 : E2 → E2 defined by

J2q2(x) := 4q2(
x
2

), for all q2 ∈ E2 and x ∈ X. (38)

Let q2, h2 ∈ E2 and let µ ∈ [0,∞] be an arbitrary constant with d(q2, h2) ≤ µ. From the definition of d2, we
have

N(q2(x) − h2(x), µt) ≥
t

t + Φ(x)

for all x ∈ X and all t > 0. Hence

N(J2q2(x) −J2h2(x),Lµt) = N(4q2(
x
2

) − 4h2(
x
2

),Lµt)

= N(q2(
x
2

) − h2(
x
2

),
L
4
µt)

≥

L
4 t

L
4 t + Φ( x

2 )
≥

L
4 t

L
4 t + L

4 Φ(x)

=
t

t + Φ(x)
(39)

for all x ∈ X and all t > 0. Therefore

d2(J2q2,J2h2) ≤ Ld2(q2, h2) (40)

for all q, h ∈ E.
It follows from (37) that

N(1(x) − 41(
x
2

),
2
n

L
2

t) ≥

L
4 t

L
4 t + Φ( x

2 )
≥

L
4 t

L
4 t + L

4 Φ(x)

=
t

t + Φ(x)
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for all x ∈ X and all t > 0. So, we have d2(1,J21) ≤ L
2n . Therefore according to Lemma 2.7, the sequenceJk

21

converges to a fixed point Q of J2, that is,

Q : X→ Υ, N − lim
n→∞

4k1(
x
2k

) = Q(x)

and Q(2x) = 4Q(x) for all x ∈ X. Also Q is the unique fixed point J2 in the set E∗2 = {q2 ∈ E2 : d2(1, q2) < ∞}
and

d2(1,Q) ≤
1

1 − L
d2(1,J21) ≤

L
2n(1 − L)

,

that is, inequality (32) holds true for all x ∈ X and all t > 0. It follows from (30) that

N(4kD1(
x1

2k
, . . . ,

x2n

2k
), 4kt) ≥

t
t + ϕ( x1

2k , . . . ,
x2n
2k ) + ϕ(− x1

2k , . . . ,−
x2n
2k )

for all x1, . . . , x2n ∈ X, all t > 0 and all k ∈N. By (30), we get

N(4kD1(
x1

2k
, . . . ,

x2n

2k
), t) ≥

t
4k

t
4k + Lk

4k (ϕ( x1
2k , . . . ,

x2n
2k ) + ϕ(− x1

2k , . . . ,−
x2n
2k ))

for all x1, . . . , x2n ∈ X, all t > 0 and all k ∈N.

Since lim
k→∞

t
4k

t
4k + Lk

4k (ϕ(
x1
2k ,...,

x2n
2k )+ϕ(−

x1
2k ,...,−

x2n
2k ))

= 1 for all x1, . . . , x2n ∈ X and all t > 0, we have

N(DQ(x1, . . . , x2n), t) = 1

for all x1, . . . , x2n ∈ X and all t > 0. Since every fuzzy Banach space Υ is a real vector space, by Lemma 3.2,
the mapping Q : X → Υ is quadratic. Finally it remains to prove the uniqueness of Q. Let Q′ : X → Υ
is another quadratic mapping satisfying (3) and (32). Since d2(1,Q′) ≤ L

n(1−L) and Q′ is quadratic, we get
Q′ ∈ E∗2 and J2Q′(x) = 4Q′( x

2 ) = Q′(x) for all x ∈ X, that is, Q′ is a fixed point of J2. Since Q is the unique
fixed point of J2 in E∗2, then Q′ = Q. This completes the proof of the theorem. �

Corollary 3.10. Let p > 2 and θ be non-negative real numbers. Let X be a normed vector space with norm ‖ · ‖. Let
f : X → Υ be a mapping satisfying f (0) = 0 and (17). Then there exists a unique quadratic mapping Q : X → Υ
satisfying (3) such that

N( f (x) + f (−x) −Q(x), t) ≥
(2p
− 4)t

(2p − 4)t + 22+p · θ‖x‖p
(41)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.6 by taking

ϕ(x1, . . . , x2n) = θ(‖x1‖
p + · · · + ‖x2n‖

p)

for all x1, . . . , x2n ∈ X and choosing L = 22−p.

Corollary 3.11. Let f : X → Υ be an even mapping for which there exists a function ϕ : X2n
→ [0,∞) satisfying

f (0) = 0, (30) and (31). Then there exists a unique quadratic mapping Q : X→ Υ satisfying (3) such that

N(2 f (x) −Q(x), t) ≥
n(2 − 2L)t

n(2 − 2L)t + LΦ(x)
(42)

for all x ∈ X and t > 0, where Φ(x) is defined in (8).
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Theorem 3.12. Let f : X→ Υ be a mapping satisfying f (0) = 0 for which there exists a function φ : X2n
→ [0,∞)

such that

N(D f (x1, . . . , x2n), t) ≥
t

t + φ(x1, . . . , x2n)
(43)

for all x1, . . . , x2n ∈ X. If there exits a constant 0 < L < 1 such that

φ(2x1, . . . , 2x2n) ≤ 4Lφ(x1, . . . , x2n) (44)

for all x1, . . . , x2n ∈ X, then there exists a unique quadratic mapping Q : X→ Υ satisfying (3) such that

N( f (x) + f (−x) −Q(x), t) ≥
n(2 − 2L)t

n(2 − 2L)t + Ψ(x)
(45)

for all x ∈ X and t > 0, where where Ψ(x) is defined in (23).

Proof. Using the same method as in the proof of Theorem 3.9, we have

N(1(2x) − 41(x),
2
n

t) ≥
t

t + Ψ(x)
(46)

for all x ∈ X and all t > 0, where

Ψ(x) = φ(2x, . . . , 2x︸     ︷︷     ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

) + φ(−2x, . . . ,−2x︸         ︷︷         ︸
n times

, 0, . . . , 0︸  ︷︷  ︸
n times

).

We introduce the definitions for E2 and d2 as in the proof of Theorem 3.9 (by replacing Φ by Ψ) such that
(E2, d2) becomes a complete generalized metric space. Now we consider the function J2 : E2 → E2 defined
by

J2q2(x) :=
1
4

q2(2x), for all q2 ∈ E2 and x ∈ X. (47)

Let q2, h2 ∈ E2 and let µ ∈ [0,∞] be an arbitrary constant with d2(q2, h2) ≤ µ. From the definition of d2,
we have

N(q2(x) − h2(x), µt) ≥
t

t + Ψ(x)

for all x ∈ X and all t > 0. Hence

N(J2q2(x) −J2h2(x),Lµt) = N(
1
4

q2(2x) −
1
4

h2(2x),Lµt)

= N(q2(2x) − h2(2x), 4Lµt)

≥
4Lt

4Lt + Ψ(2x)
≥

4Lt
4Lt + 4LΨ(x)

=
t

t + Ψ(x)
(48)

for all x ∈ X and all t > 0. Therefore

d2(J2q2,J2h2) ≤ Ld2(q2, h2) (49)

for all q2, h2 ∈ E2.
It follows from (46) that

N(1(x) −
1
4
1(2x),

1
2n

t) ≥
t

t + Ψ(x)
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for all x ∈ X and all t > 0. So, we have d2(1,J21) ≤ 1
2n . Therefore according to Lemma 2.7, the sequenceJk

21

converges to a fixed point Q of J2, that is,

Q : X→ Υ, N − lim
n→∞

1
4k
1(2kx) = Q(x)

and Q(2x) = 4Q(x) for all x ∈ X. Also Q is the unique fixed point J2 in the set E∗2 = {q2 ∈ E2 : d2(1, q2) < ∞}
and

d2(1,Q) ≤
1

1 − L
d2(1,J21) ≤

1
2n(1 − L)

,

that is, inequality (45) holds true for all x ∈ X and all t > 0. The rest of the proof is similar to the proof of
Theorem 3.9 and we omit the details. This completes the proof of the theorem. �

Corollary 3.13. Let 0 < p < 2 and θ be non-negative real numbers. Let X be a normed vector space with norm ‖ · ‖.
Let f : X→ Υ be a mapping satisfying f (0) = 0 and (17). Then there exists a unique quadratic mapping Q : X→ Υ
satisfying (3) such that

N( f (x) + f (−x) −Q(x), t) ≥
(4 − 2p)t

(4 − 2p)t + 22+p · θ‖x‖p
(50)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.9 by taking

φ(x1, . . . , x2n) = θ(‖x1‖
p + · · · + ‖x2n‖

p)

for all x1, . . . , x2n ∈ X. Next choosing L = 2p−2, we get the desired result. �

Corollary 3.14. Let f : X → Υ be an even mapping for which there exists a function ϕ : X2n
→ [0,∞) satisfying

f (0) = 0, (43) and (44). Then there exists a unique quadratic mapping Q : X→ Υ satisfying (3) such that

N(2 f (x) −Q(x), t) ≥
n(2 − 2L)t

n(2 − 2L)t + Ψ(x)
(51)

for all x ∈ X and t > 0, where Φ(x) is defined in (23).

Combining Theorems 3.3 and 3.9, we obtain the following result.

Theorem 3.15. Let f : X→ Υ be a mapping satisfying f (0) = 0 for which there exists a function ϕ : X2n
→ [0,∞)

satisfying (5) and (31). Then there exists a unique additive mapping A : X→ Υ satisfying (3) and a unique quadratic
mapping Q : X→ Υ satisfying (3) such that

N(2 f (x) − A(x) −Q(x), t) ≥
n(1 − L)t

n(1 − L)t + 3LΦ(x)
(52)

for all x ∈ X and t > 0, where Φ(x) is defined in (8).

Proof. By Theorems 3.3 and 3.9, we obtain

N( f (x) − f (−x) − A(x), t) ≥
n(1 − L)t

n(1 − L)t + LΦ(x)
,

N( f (x) + f (−x) −Q(x), t) ≥
n(2 − 2L)t

n(2 − 2L)t + LΦ(x)

for all x ∈ X and t > 0. Thus

N(2 f (x) − A(x) −Q(x), 2t)
≥ min{N( f (x) − f (−x) − A(x), t),N( f (x) + f (−x) −Q(x), t}

≥
n(2 − 2L)t

n(2 − 2L)t + 3LΦ(x)

for all x ∈ X and t > 0, and we get the desired result. �
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Corollary 3.16. Let p > 2 and θ be non-negative real numbers. Let X be a normed vector space with norm ‖ · ‖. Let
f : X → Υ be a mapping satisfying f (0) = 0 and (17). Then there exists a unique additive mapping A : X → Υ
satisfying (3) and a unique quadratic mapping Q : X→ Υ satisfying (3) such that

N(2 f (x) − A(x) −Q(x), t) ≥
(2p
− 4)t

(2p − 4)t + 3 · 23+p · θ‖x‖p
(53)

for all x ∈ X and all t > 0.

Proof. Define ϕ(x1, . . . , x2n) = θ(‖x1‖
p + · · · + ‖x2n‖

p), L = 22−p, and apply Theorem 3.15 to get the desired
result. �

Similarly, combining Theorems 3.6 and 3.12, we obtain the following result.

Theorem 3.17. Let f : X→ Υ be a mapping satisfying f (0) = 0 for which there exists a function ϕ : X2n
→ [0,∞)

satisfying (20) and (21). Then there exists a unique additive mapping A : X → Υ satisfying (3) and a unique
quadratic mapping Q : X→ Υ satisfying (3) such that

N(2 f (x) − A(x) −Q(x), t) ≥
n(1 − L)t

n(1 − L)t + 3Ψ(x)
(54)

for all x ∈ X and t > 0, where Ψ(x) is defined in (23).

Proof. Similar to the proof of Theorem 3.15, the result follows from Theorems 3.6 and 3.12. �

Corollary 3.18. Let 0 < p < 1 and θ be non-negative real numbers. Let X be a normed vector space with norm ‖ · ‖.
Let f : X → Υ be a mapping satisfying f (0) = 0 and (17). Then there exists a unique additive mapping A : X → Υ
satisfying (3) and a unique quadratic mapping Q : X→ Υ satisfying (3) such that

N(2 f (x) − A(x) −Q(x), t) ≥
(2 − 2p)t

(2 − 2p)t + 3 · 22+p · θ‖x‖p
(55)

for all x ∈ X and all t > 0.

Proof. Define ϕ(x1, . . . , x2n) = θ(‖x1‖
p + · · · + ‖x2n‖

p), L = 2p−1, and apply Theorem 3.17 to get the desired
result. �
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